%
4’S[TAS v
VILNIUS UNIVERSITY
FACULTY OF MATHEMATICS AND INFORMATICS
INSTITUTE OF COMPUTER SCIENCE
DEPARTMENT OF COMPUTATIONAL AND DATA MODELING

Semester Project

Development of the 3D computer game ""En Ami'' using Unity
game engine

Done by:

Justinas Lekavicius signature

Supervisor:
dr. Joana Katina

Vilnius
2020

Contents
Abstract
Santrauka
Introduction

1 Analysis of similar games
1.1 Introduction to the analysis of similar games
1.I.1 Team Bondi and Rockstar Games "L.A. Noire"
1.1.2 Frogwares "Sherlock Holmes: Crimes & Punishments"
1.1.3 N-Fusion Interactive "Deus Ex: The Fall"
1.2 Conclusion of the analysis of similar games

2 Analysis of the theoretical part of the semester project
2.1 Development of animation for Unity game engine
2.1.1 Unity Animation System (Mecanim)
2.1.2 Accepted animation formats and compression
2.1.3 Combining face and body animations
2.14 Advantages and limitations of markerless motion capture
2.2 System reqUuIr€mMents v v e e e e e e e e e e e
2.3 UML Use Casesdiagram v v ittt e e
24 UML State diagram e

3 Analysis of the developed game
3.1 Analysis of the used hardware and software
3.1.1 Unity game engine it e
3.1.2 Hardware: Microsoft Kinect
3.1.3 Microsoft Visual Studio 2019
3.1.4 iPi Mocap Studio and iPiRecorder
3.1.5 Faceshift
32 Gamemechanics
321 Firstpersonmode
3.2.2 Thenotebook e
3.2.3 Interacting with game characters
3.2.4 The "final decision" mechanic
3.3 Game character animationsl

Conclusions and Recommendations

References

13
13
13
13
13
14
15
16
16
17
18
20
20

23

24

Abstract

This semester project is development of the 3D computer game "En Ami" using Unity game
engine, as well as utilizing motion capture solutions for animating game characters. Game engines
are becoming easier to develop games with, while motion capture animation is becoming increas-
ingly available and affordable for game developers, thus the goal of this project was to develop a 3D
computer game incorporating face and body motion capture animation for more realistic presenta-
tion and immersive gameplay. Research was done on how game characters can be animated with
motion capture and how this can be integrated into the Unity game engine. The Unity game engine
was used to develop the game using free Unity Asset Store assets (character and environment mod-
els) and self-made 3D models, Microsoft Kinect gaming controller was used for facial and body
motion capture, Microsoft Visual Studio 2019 for writing game scripts, iPi Mocap Studio for body
motion capture animating, cleanup and export, and Faceshift for facial motion capture animating,
cleanup and export. The result is a 3D interactive story computer game and the conclusion that a
3D game with realistically animated characters can be developed using inexpensive hardware and
in satisfactory quality.

Santrauka
Trimacio kompiuterinio Zaidimo ,,En Ami‘ kiirimas naudojant Unity Zaidimu varikli

Sio kursinio darbo tikslas — trimagio kompiuterinio Zaidimo "En Ami" kiirimas naudojant
Unity Zaidimy variklj bei pritaikant judesiy fiksavimo technologijas Zaidimo veikéjy animavimui.
Kurti Zaidimus naudojant Zaidimy variklius tampa vis lengviau, o judesiy fiksavimo technologijos
zaidimy kuréjams tampa vis prieinamesnés ir iperkamesnés, tad Sio projekto tikslas — sukurti tri-
mati kompiuterinj Zaidima jtraukiant veido ir kiino judesiy fiksavimo technologijas tikroviSkesniam
vizualiam pateikimui ir itraukian¢iam Zaismui. Buvo iStirta kaip Zaidimy veikéjai gali biiti animuo-
jami naudojantis judesiy fiksavimu ir kaip tai galima integruoti Unity Zaidimy kiirimo platformoje.
Unity zaidimy variklis naudotas Zaidimo kiirimui, naudojantis nemokamais Unity Asset Store
veikéjy ir aplinkos modeliais, taip pat naudojant savo sukurtus 3D modelius, Microsoft Kinect
Zaidimy valdiklis naudotas veido ir kuino judesiy fiksavimui, Microsoft Visual Studio 2019 nau-
dota Zaidimo kodo raSymui, o Faceshift ir iPi Mocap Studio naudota atitinkamai veido judesiy bei
kiino judesiy fiksavimo animavimui bei perkélimui i Unity Zaidimy varikli. Darbo rezultatas yra
trimaté interaktyvi istorija bei daroma iSvada, jog imanoma sukurti trimatj kompiuterinj Zaidima
su tikroviSkai judanciais veikéjais, naudojant nebrangia jranga ir iSgaunant patenkinamos kokybeés
animacija.

Introduction

Computer games are getting more and more mainstream nowadays, with millions of people playing
computer games and the video game industry earning billions of dollars.

For reference, in 2019 alone over nine thousand computer games were released on Steam game
digital distribution platform [1], both by major game publishers and by indie developers. Fur-
thermore, developing computer games has become more accessible as well, with release of game
development engines such as Unreal Engine and GameMaker Studio 2. One of such engines is the
Unity game engine.

Unity is a game engine developed by Unity Technologies, first released in 2005. A vast selec-
tion of paid and free assets in the Unity Asset Store, the powerful Unity Editor and large community
makes this game engine popular among both indie game developers and major video game compa-
nies. Many critically acclaimed games were developed using this engine, such as Inside, Cuphead,
Cities: Skylines and even games such as Arizona Sunshine and Iron Man VR, both playable with
a virtual reality headset. Games made in Unity can be either 2D or 3D, the former being made
up of two dimensional game sprites and the latter composed of three dimensional models. 3D
games, such as of adventure or role playing genres may have various environment models and
human characters, each with their own animations which make the game world feel alive and dy-
namic. To make the game world feel more natural, in-game human characters need to have life-like
movements and quality animations, so as not to appear stiff or robotic. The solution to this prob-
lem is motion capture technology, often utilised by major game companies in favor of traditional,
time-consuming keyframe animation.

Motion capture allows an actor to capture their movements in front of a single or multiple mo-
tion capture sensors and then transform the data of the captured movement into usable animation,
which can be applied to a character skeleton and then exported in a selected format to use in a vir-
tual environment [S]. Motion capture can be used to capture either face or body movements, using
either marker or markerless motion capture systems, the former using reflective markers placed on
body which reflect infrared rays cast by motion capture camera back to the same cameras, in order
to determine the location of the markers and the performing actor, whereas the latter type of sys-
tem does not require the use of any markers or additional equipment and instead uses depth sensors
for determining the distance between the camera and the actor. Although motion capture systems
could have been considered a luxury years ago and only used by animation industry in Hollywood
films and high-budget video games, nowadays motion capture is becoming increasingly available
and affordable to enthusiasts and indie game developers. For example, Microsoft Kinect game
controller or PlayStation Move controllers and PlayStation Eye cameras are generally inexpensive
and can be used to produce quality animation using motion capture software, then exported to file
formats such as .fbx which are supported by game engines such as the previously mentioned Unity
engine. Having an interest in developing a computer game for quite a long time, as well as hav-
ing experience in animating using motion capture systems I decided to develop my own computer
game using the Unity game engine for computers running Windows 10.

The main goal of this semester project is to develop a 3D computer game using Unity game en-
gine and utilizing motion capture technology for realistic game character animation. The developed
computer game is intended for people who enjoy story based, slower paced games.

The tasks of the semester project are as follows:

Analysis of similar systems (in this case similar video games)

Selection and analysis of technologies used for development of the project

Design of the game (theoretical part of the semester project)

Development of the game

The final result of the semester project is a short 3D "interactive story" computer game called
“En Ami”. The result can help examine how more realistic animation may impact the overall
presentation and gameplay of the game, as well as determine whether it is possible to do so using
inexpensive and easy to set up hardware, with no need for a special studio or expensive equipment.

1 Analysis of similar games

1.1 Introduction to the analysis of similar games

There are video games developed by various game studios which have similarities to the semester
project, although differ in other terms such as selected technologies and game engines. A closer
look at the similar systems and their advantages and disadvantages can help make better design
and other planning choices for the developed semester project.

1.1.1 Team Bondi and Rockstar Games "'L.A. Noire"

L.A. Noire is a third person action/detective game released in 2011, developed by Team Bondi
using a modified proprietary Rockstar game engine and published by Rockstar Games. Over the
course of the game the player solves cases, during which the player is required to investigate crime
scenes, collect clues and talk to both civilians and suspects in order to obtain information vital to
the investigation. The characters may not be very cooperative and may attempt to hide the truth,
and that is when the player has to decide whether the character is telling the truth, omitting some
details or providing information contradictory to the collected clues.

In L.A. Noire the character faces are animated using motion capture technology. L.A. Noire fea-
tures motion capture technology called MotionScan, developed by Depth Analysis. Using this
technology a seated actor’s facial performance is recorded using 32 cameras and constructed into
an animated three dimensional model which is transferred into the game.

The advantage of such technology is that its capable of capturing even the subtlest facial expres-
sions, providing superior quality animation. That is essential to the gameplay as the player may
otherwise have difficulty distinguishing character emotions and subtle expressions. High quality
animation, as well as performances by Hollywood actors helps prevent the "uncanny valley" effect
and deeply immerse the player into the gameplay, making the game feel like an interactive movie.
However, such technology also has its drawbacks. The MotionScan system is extremely expensive
[4]. The system also needs great lighting conditions and large amounts of storage to store recorded
data. There are also physical limits, i.e. the actors must remain seated for the duration of the
recorded take.

1.1.2 Frogwares ''Sherlock Holmes: Crimes & Punishments"

Sherlock Holmes: Crimes & Punishments is an adventure computer game developed by Frogwares
using Unreal Engine 3 and released in 2014. The player has to look for clues, talk to suspects
and solve cases. The game is similar to the semester project in terms of the general idea and
gameplay. Sherlock Holmes: Crimes & Punishments can be played both in first person view and
talking to non playable characters is a core part of the game, also both games are story-oriented.
Motion capture is also used in both games to animate in-game characters, however the advantage
Frogwares as games studio has is access to a full performance capture system, allowing for better
quality animation.

1.1.3 N-Fusion Interactive ''Deus Ex: The Fall"

Deus Ex: The Fall is an action role playing game developed by N-Fusion Interactive for mobile
devices running Android and 10S, and later Windows operating system. The game is also story-

heavy, with plot details uncovered via character conversations and in-game environment. Players
can interact with non playable characters by engaging in dialogue, learning more about the char-
acters themselves and the surrounding game world. The game was developed using Unity game
engine and character animations, specifically during in-game cutscenes animated using motion
capture. However, it appears that facial animations were done using keyframe animation. This
is a disadvantage as in this game character facial movements appear to be artificial, compared to
life-like facial animations achieved by other mentioned games, thus the solution used for facial
animations already appears to be dated. This is understandable though, as the game was origi-
nally developed for mobile devices and presumably under a lower budget compared to other games
developed in the Deus Ex franchise.

1.2 Conclusion of the analysis of similar games

The three analysed games differ in terms of used technologies, used game engines and even plat-
forms being developed on, but they have one thing in common — they aim to present a rich, im-
mersive story to the player. That is done not only by well written game plot, but also by presenting
themselves almost like movies, going to such lengths as using Hollywood actors and incorporating
their performances into gameplay, as is the case with L.A. Noire. Analysing similar games helped
make better decisions concerning the overall design of the semester project. System functional
requirements were set and used technologies were chosen for the semester project based on the
analysis of the similar games. Since story-driven games are often best played when immersed into
the game’s story, a high quality graphical presentation is needed, that includes not only the graph-
ics, but also the game world. However, animating in-game characters like in the analysed games is
extremely expensive, the case being L.A. Noire for example. Furthermore, professional game de-
velopment studios are known to apply state of the art technologies in their developed games, such
as either in-house game engines or advanced motion capture technologies, which is simply not pos-
sible for the developed semester project. Thus, an entry-level motion capture system, specifically
a Microsoft Kinect game controller and a free version of the Unity game engine will be used for
development of the project.

2 Analysis of the theoretical part of the semester project

2.1 Development of animation for Unity game engine

As game animation is an important part of the developed semester project game, I have done
additional research into the subject in order to determine the best practices to bring motion capture
animation into the Unity game engine to be used for game character models.

2.1.1 Unity Animation System (Mecanim)

Since Unity version 4, Mecanim Animation System is included in the Unity Editor, currently sim-
ply called Animation System. Mecanim allows previewing of animation clips, transitioning them
one between another and allows mapping for humanoid and generic character types, the former
type featuring an appearance of a human (two legs, two arms, one head) and the latter used for
other types of character models. The Mecanim system also creates an Avatar for animated char-
acters, which translates the character model’s bone structure to bone structure supported by Unity

[2]. The Unity game engine can read animation files in Autodesk FBX format and animation files
have to be assigned to Humanoid avatar via Unity Editor in order to work properly with humanoid
character models.

2.1.2 Accepted animation formats and compression

As mentioned, the Unity game engine uses Autodesk FBX format animation files, which is a pop-
ular format for other software such as Blender or Autodesk’s own MotionBuilder. Motion capture
programs iPi Mocap and Faceshift can also export animations in .fbx format but in addition to an-
imation, the character body and face meshes and material files are included in the .fbx file as well.
This is a problem for one reason, that is file size. If every animation .fbx file for both body and face
animations of in-game characters also included their character model, the files would be as large as
20 megabytes each. Furthermore, it is difficult to compress them to smaller size because character
model and material file compression ratio may be higher than animation file compression ratio,
therefore resulting in overall higher compression ration and the compressed file taking up more
space. In addition to that, Unity does not allow editing of .fbx animation files as they are read-only
by default. Sometimes animation needs to be edited to clean up some jittering or artifacts in facial
or body animation.

Therefore, I have concluded that the best practice for handling animation files is to "extract" the
animation from .fbx files. The FBX animation files contain an animation clip file in .anim format,
which is Unity’s format for animation clips that are used for Unity Editor’s Animator. The .anim
file can be copied by highlighting it in the .fbx file in Unity Editor and pressing CTRL+D. A du-
plicate of the .anim format file is created, which can then be edited using Unity Editor. The .fbx
file can then be deleted to save space.

The advantages for "extracting" the animation files are several. One of them is that the extracted
file is no longer read-only and can be edited in the Unity Editor’s Animation view by going to
Window > Animation. Another great advantage is not only reduced file size, but the small com-
pression radius of the file when compressing using, for example, 7zip. The compressed file is then
significantly smaller.

2.1.3 Combining face and body animations

Face and body animations are exported using Faceshift and iPi Mocap Studio programs respec-
tively, in separate .fbx files. At least two animations should be applied to a single character game
object, one being the the animation for facial expressions and the other being the animation for
body movements. To do that successfully, Unity Animation Controllers [6] are used.

An animation controller has been created for every character for the sake of convenience and or-
ganisation. The animation controllers contain States, which can be transitioned between, mirrored
or looped. The States have a Motion attribute, which is the applied animation for the State. By cre-
ating two States and applying selected animations to each one, the States can then be transitioned
between one another, thus allowing transition of different animations. Animation Controllers may
also have different Layers for different States. The Layers can be synchronised or executed inde-
pendently. For the semester project character Animation Controllers have two layers, named Face
Animations and Body Animations respectively. Hierarchically the Body Animations layer is higher
and the Face Animations layer is lower. I have discovered that the Face Animations layer should
be lower and set for "Additive" Blending, while the Body Animations layer ought to be higher

and set for "Override" Blending to avoid animation key overriding or certain overlapping. I have
been experimenting with the layer hierarchies and Blending options, only to discover glitches and
artifacts in character animations. The technique I have currently chosen for Animation Controller
Layers works fairly well, without face animations overriding body animations for example.

2.1.4 Advantages and limitations of markerless motion capture

For making face and body animations I have decided to use Microsoft Kinect, a depth sensor and
game controller for XBOX 360 game console. Microsoft Kinect can also be used on a computer
with a USB port and running Windows 7 or older operating system. The depth sensor can be
used with markerless motion capture software such as iPi Mocap Studio to make realistic body
animations for easy and relatively fast export (depending on the GPU of the used computer) to
Unity game engine. Having such a depth sensor was one of the advantages that [wanted to make
use of from the start, however I also ran into technical limitations during the course of the semester
project, one of them being having to work in a small room. To fully utilize motion capture, a
larger room is useful. In my case, working in a smaller room resulted in more restrained and
simple animations. Furthermore, having only one depth sensor restricted the possibilities of body
motion capture a bit. I was not able to perform such actions as having my hands behind my back
or turning around, as the tracking procedure in iPi Mocap Studio tended to produce animation
glitches. The reason for such glitches is because the depth sensor cannot capture what it cannot
see, for example having arms too close to the body or behind the back causes tracking problems
because of the depth sensor’s inability to distinguish the location of the arms. Furthermore, quick
movements cause problems for Kinect as well because of it recording video at 30 frames per second
and not being able to read human motion correctly because of motion blur due to lower framerate
[3]. Having at least two depth sensors may have helped increase animation quality due to depth
information being recorded by two depth sensors, one in front of and the other behind the actor,
allowing for more complex human movements.

2.2 System requirements

Functional and non-functional system requirements of the semester project are presented below.

Functional requirements for the project:
* Loading different gameplay sequences depending on player progress
» Acceptable quality character facial animations (crucial for enjoyable gameplay)

* Changing the game character behavior based on the actions of the players (i.e. choosing
correct or incorrect options during dialogue changes game character’s facial animations for
appropriate response)

Non-functional requirements for the project:
» Simple to launch the game
 Self explanatory user interface

* Immersive and fun gameplay experience

10

The game is designed for mid-range computers running Windows 10 64 bit operating system.
Currently the game has been tested on three computers, one of them being high-end, the other
being mid-range and the last one being low-range and outdated. The recommended specifications
for computers running the game — at least 8GB of RAM, NVIDIA GTX 1050 GPU or equivalent
(or weaker dedicated GPU), Intel Core 15-7300HQ CPU or equivalent (or weaker) and around 1GB
of free storage space.

The current recommended specifications have been set not only for smooth gameplay and ac-
ceptable framerates (at least 30 frames per second), but also for correct rendering of the game
graphics. The game has been tested on a low-range and fairly old laptop with 4GB of RAM and
Intel Centrino CPU with integrated graphics. Unfortunately, the game did not render the characters
properly, making the game unplayable.

2.3 UML Use Cases diagram

The UML use cases diagram (Figure 1) represents what functions the player can perform in-game.
The Player is the only actor. The player can start the main game or the tutorial section via main
menu, pause the game, exit to main menu via pause screen and exit the game via the main menu.
In-game the player can start and quit conversations with characters (when they are interactable), as
well as select dialogue options during a conversation. When not in a conversation, the player can
open or close the notebook once it is unlocked, and most importantly, the player can move their
character using keyboard WASD keys and look around the environment using the mouse.

Start Game
Pause Game
Exit to Main Menu

Exit Game

| Start Tutorial

Player Start conversation
with character

Quit conversation
with character

e

Select dialogue options

Open and close notehooa

Maove player character
and look around

Figure 1. UML Use Case diagram of the semester project

11

2.4 UML State diagram

"Quit game" button pressed .

l Game started
<

<
4{ Main Menu]7

= ry Play" button pressed

Yes

Is the game over?
"Enter Tutorial" [(either won or lost)
Main game
"Quit to menu" button pressed button pressed

ESC key pressed No

A 4 y

ESC key pressed
—| PaL|seMl Level Yes
Is the player in

the tutorial or "Continua" buth A A
h ") ontinue" button
in the main game? pressed Is the tutorial section

completed?

Tutorial No

Main game

Figure 2. UML State diagram of the semester project

The UML state diagram is presented in Figure 2. Four main states of the developed system: Main
Menu, Main game, Tutorial Level and Pause menu. The Main Menu is important as it allows the
player to start the game or the tutorial section, transitioning into either Main game or Tutorial Level
states respectively. The Main game state includes, as the names suggests, the content of the main
game, including the animated characters, conversation sequences and all the other game mechan-
ics. The Tutorial Level state is similar to the Main game state, although in smaller and more linear
scale. The Pause Menu state allows the player to continue the game or go back to the Main Menu
state, and can be accessed from either Main game or Tutorial Level states.

Once the game is started, the player is greeted with the main menu screen. The main screen
contains three buttons, named "Play", "Enter Tutorial" and "Quit game" respectively. Should the
player want to quit the game right away, they can do so by pressing the "Quit game" button. The
tutorial section can be played by pressing the "Enter Tutorial" button. The player can then play
the tutorial level, which presents the player some information about the game. Once the tutorial
is completed, the player may quit the tutorial level. Once the tutorial level is quit, the player is
returned to the main menu. The player can then press the "Play" button to play the main game.
During the gameplay, either in the tutorial section or in the main game, the player can press the
Escape (ESC) key on their keyboard to enable the pause menu. The pause menu contains two
buttons: "Quit to menu" and "Continue game". If the "Quit to menu" button is pressed, the player
is brought back to the main menu screen. If the "Continue game" button is pressed, the pause
menu is disabled and the player can continue the game where they left off, either in the tutorial or
the main game. Once the main game is completed, either by getting a "game over" or a "you win"
ending, the player can end the main game and return to the Main Menu.

12

3 Analysis of the developed game

3.1 Analysis of the used hardware and software
3.1.1 Unity game engine

Unity is a game engine first released in 2005. Featuring a wide documentation [7] and a very ac-
tive community of game developers, it is one of the better choices for beginner game developers.
One of the strong points of the engine is its ability to build 3D, 2D, augmented reality and virtual
reality games for a variety of platforms, including but not limited to Windows, Linux, PlayStation
4, Android, i0OS and more. Another strong advantage over other game engines is its Unity Editor,
featuring drag and drop functionality and a simple to learn over time user interface. The Unity
Editor also allows to view imported models and animations, materials and edit them to a certain
extent. This is highly useful, for example to clean up imported animation files or loop them seam-
lessly. Unity also features its own Asset Store, which allows users to download purchased and free
assets. Assets range from scripts, sounds to models and animations.

The following free assets were used for the development of the game:

* Snaps Prototype | Office by Asset Store Originals
* Deucalion’s Humans by Freedom’s Gate

* FGC Male Adam by Freedom’s Gate

3.1.2 Hardware: Microsoft Kinect

Microsoft Kinect is a motion controller developed by Microsoft for the XBOX 360 game console.
The controller can used to play video games with motion controls on the XBOX 360 game console,
however it can also be used with computers running Microsoft Windows for various development
purposes. Although the Microsoft Kinect is designed for XBOX 360 game console, it can also
be plugged into a PC with a USB port, using a proprietary adapter. The controller will be used
for motion and facial capture animation. There are two reasons for using the controller. The first
one is to save time while working on character animation, as acting the animations yourself and
transferring them to the game engine via motion capture software is significantly easier and quicker
than animating using keyframes using, for example, Blender or Unity’s own built-in Animation
module. The second one is to attempt to create more realistic and human-like animations, which
are important to the gameplay. For example, more realistic face animations create a better game
experience when the player needs to determine whether the animated character is telling the truth
or they are is feeling.

3.1.3 Microsoft Visual Studio 2019

Microsoft Visual Studio 2019 is a widely used integrated development environment, used for de-
veloping programs and scripts using C#, C++, Java and other languages. Since Unity scripts are
written in C# programming language, it will be used for the majority of game programming, writ-
ing code using Microsoft Visual Studio.

13

3.1.4 iPi Mocap Studio and iPi Recorder

B New £ 0pen ~ Esave ~ Rtive _ © = Undo < Redo | EiCopy ~ Wpaste _ Iy Select = b Move D Rotste AK _ © @ Comere: | 1| - BIskin o 1 | B Video o 1|/ Depth o 1| 0 View Background

o o
"

LowerSpine
MiddleSpine
Chest

Hand

indext ~
findex?

findexd +

) @@ e Fame| 6744] Time:0344500 M 4l Py B > M

o @ Teke A Takel cEm Mm% B ieitHang: v 0 @ Rig X Yo

Based Upon (at Start)
offset.

Root Transform Position (1)
Bake Into Pose

Based Upon
offset.

Root Tra nmp sition (X2)
Bake Into Pos:
Based Upon

SusPE('T#'li\ﬂZﬁWu ’

GREY

S oMICD
=

—

,2'

Figure 3. Top: A screenshot of iPi Mocap Studio work session. Bottom left: A screenshot of the
Unity Editor’s Inspector window, allowing preview of the imported animation. Bottom right: A

screenshot of the game (result of the animation applied to Humanoid avatar and added to charac-
ter’s Animation Controller)

1P1 Recorder and iPi Mocap Studio are video capture and motion capture software programs re-
spectively, developed by iPi Soft LL.C. iPi Recorder can be used to record a video of an actor’s
movements using a depth sensor such as Microsoft Kinect. The actor is distinguished from the
background by firstly performing a background analysis, which is recording the room for up to ten
seconds, then filming a motion capture session with the actor performing the movements in front of
the camera. Finally the background is filtered out, with only the actor movement being processed
into information for use in iPi Mocap Studio. Using iPi Mocap Studio the motion capture data can
be processed into animation, with a skeleton mesh being used for tracking of capture data [3] and
then used for a selected target character, in this case one of the Freedom’s Gate created human
character models used for the project. Once the animation is tracked, cleaned up and ready for

14

export, it can be exported to Autodesk FBX format for use in the Unity game engine. Animation
can be exported in different formats, for example Autodesk FBX or Valve Source Engine DMX.

This software was selected for a few reasons. Firstly, the motion capture software is markerless,
meaning that the actor is not required to wear any special equipment (except comfortable clothes).
Therefore, it can be used at home with no need for a large studio or expensive equipment . Secondly,
the software is easy to work with, supports Microsoft Kinect game controller well and is able to
export higher quality animation in Autodesk FBX format, which is readable in Unity game engine.
One alternative to iPi Mocap Studio could be Cinema Mocap 2, a markerless motion capture system
for Unity game engine that, unlike iPi Mocap Studio, is not a separate program and can be used via
Unity Editor. However, when it came to chosing between iPi Mocap Studio and Cinema Mocap 2,
the former was selected due to me being more familiar and comfortable with the solution.

3.1.5 Faceshift

Faceshift is a facial capture software developed by Faceshift AG which allows a person to setup a
face template and track their facial movements using Microsoft Kinect, and later export the anima-
tion in FBX format for a selected character model (or avatar). Faceshift will be used for creating
in-game character facial animations.

)

i

Figure 4. Top: A screenshot of Faceshift work session. Bottom: A screenshot of the game (result
of the exported animation)

Before starting any animation creation, a face profile and tracking rig must be created. That is
done by scanning a person’s face in various expressions (smiling, neutral, sneering, frowning etc.).
Once enough expressions are scanned, an actor specific tracking rig is built, which will be used

15

for further face tracking. Once a face profile and tracking rig are created, the user can record their
performance. Once the performance is recorder, the facial movements are tracked from video and
built into usable animation, which can then be refined with built-in filters. When the animation is
of satisfactory quality, it can be exported for a selected character model.

This sofware was selected for the same reasons as iPi Mocap Studio, which are Faceshift being
a markerless motion capture solution, easy to work with and being a personal preference with hav-
ing experience working with the system in the past. Also, high quality facial animation is crucial
for the developed game. As players are required to study character facial expressions in order to
determine if the character is lying or telling the truth, higher quality facial animations are needed.
Otherwise, the game may be difficult to play.
Alternatives to Faceshift exist as well, such as Faceware Live Client for Unity, which can be in-
tegrated into Unity Editor. One major advantage of Faceware over Faceshift is that it does not
require a depth sensor such as Microsoft Kinect. However, Kinect can still be used as a webcam
on Windows 10 using custom drivers and can be used with Faceware, but not in the same way as
Faceshift.

3.2 Game mechanics
3.2.1 First person mode

One of the main mechanics of the developed game is moving the player character using keyboard
WASD keys, pressing W to move forward, pressing A to strafe left, using S to move backwards and
pressing D to strafe right. The game view can be controlled by moving the mouse. This mechanic
is called the first person mode, as the player can look around in first person view and move freely
like in any typical first person shooter or similar type of game.

Current objective: Talk to the suspect

Figure 5. A screenshot of the game in first person mode

The player controls a game object called Player, which always contains a Camera, a Cylin-

16

der and a Canvas. The Camera is used to render the game view. The Camera is also a parent to
other game objects. For example, both in the Tutorial section and the Main Game the Camera has
PlayerCinematicBars game object attached to it, with the PlayerCinematicBars object itself being
a parent to two objects both called CinematicBar. The CinematicBar objects are simple models —
black bars which are attached to the camera’s top and bottom view, in order to simulate the effect
of cinematic bars which can often be seen in Hollywood movies. In the main game the Player
object also has an additional game object called ObjectiveCanvas, which contains a Text object
called ObjectiveText. The ObjectiveText object displays the current objective text for the player
to see in the upper left corner. The objective text can be set using SetCurrentObjective script’s
SetNewObjective function, which updates the objective text and also enables the display of a red
exclamation mark above the current objective, for example a character that needs to be interacted to.

The Camera object has two scripts assigned to is as Components: MouseMovement and Mou-
seVisibility. The MouseMovement script, as the name suggests, enables manipulating the Player
camera. The script is written so that actually the player is rotated whenever the mouse is moved
horizontally, so that the player may always move in the direction they are looking at. The Mou-
seVisibility script toggles the visibility of the mouse cursor on-screen. By default, the mouse is
disabled in first person mode, with enabled variable of bool type set to false. The ToggleMouse
function in the MouseVisibility script accepts a parameter of bool type, which is then used in a
logic check to hide the cursor if the passed value is false and to enable the cursor if the passed
value is true.

The Player object also has a Character Controller set as a Component, which controls the Player
object’s height and radius for collision detection, as well as for example Slope Limit, defining what
kind of slopes the player can climb when it comes to for example climbing stairs. One of the
key scripts applied to the Player is the PlayerMovement script which is responsible for controlling
the player character using the WASD keys, setting the movement speed and gravity (useful for
climbing down stairs so that the player does not get stuck suspended mid-air).

3.2.2 The notebook

The notebook is another key mechanic of the game, providing the player useful information. The
player will need to consult their in-game notebook in order to gain information about the game
story and environment. The main game has game objects called Notebook and Notebook Camera,
which are both moved out of bounds of the map. The notebook camera object is enabled whenever
the player presses the I button while in first person mode, and the notebook is displayed. The
notebook is a 3D model with different material texture set to it depending on the progress made
in-game.

17

Talk to the suspect. (m

» Some new information came in, I
dpPears that the victim died
around 9PM last Wedncsday, A
nearby CCTV camera’s recordings

Were examined and revealed that
a man was leaving the victim's
house approximately at the time of
, Dis death. The man spotted in the
recording had only one defining
feature - a bald head. The
recording is too dark and grainy to
make out any other features,

Figure 6. A screenshot of the in-game notebook interaction

The notebook has some dynamic to it, one of the aspects is its changing cover depending on
the progress the player makes. The notebook cover is set using the SetNotebookCover script. The
SetNotebookCover script’s SetCover function accepts a Texture2D variable, which in this case is a
JPG file that is used as the texture for the notebook game object’s mesh. The notebook has a few
different covers that display various text, in addition to the current objective which is written at the
top of the notebook’s page. At the beginning of the tutorial level, notebook_tutorial.jpg file is set
to the notebook mesh as a texture, while in the main game a different notebook cover is set after
every completed conversation (after a new objective is set).

3.2.3 Interacting with game characters

One of the most important mechanics of the game is interaction with game characters in form of
conversation. Over the course of the main game some of the in-game characters can be interacted
with. Once a character can be spoken to, a red exclamation mark will be displayed over them, also
the objective text at the upper left corner lets the player know which character can, and needs to
be spoken to. The interaction with game characters is controlled by the InteractCharacter script,
which is presented below.

1 using System. Collections;

2 using System.Collections.Generic;

3 using UnityEngine;

4

5 public class InteractCharacter : MonoBehaviour

6 {

7

8 public GameObject Player;

9 public GameObject CharacterConversationCamera;

10 public bool interactable; // set to either true or false when the
character can be interacted to.

11 public int minimumDistance = 1; //Default minimum distance before
the player can interact with the character.

12

13

14 void Start ()

18

15
16
17
18
19

20

21
22

23

24
25
26
27
28
29
30
31
32
33
34
35
36
37 }

{
}
void Update ()
{
float distance = Vector3.Distance(Player.gameObject.transform.
position , gameObject. transform . position);
if (distance <= minimumDistance && Input.GetKeyDown (KeyCode.E)
&& interactable == true)
{
CharacterConversationCamera.gameObject. SetActive (!
CharacterConversationCamera. gameObject. activeSelf);
Player.gameObject. SetActive (! Player.gameObject.
activeSelf);

public void Enablelnteraction ()

{

interactable = true;

public void Disablelnteraction ()

{

interactable = false;

For a game character to be interactable, the script has to be assigned to the character game object
as a Component. Then, via Unity Editor Inspector screen the Player game object and Character
Conversation Camera objects have to be set, as well as Interactable checkbox (interactable variable
of bool type) and Minimum Distance attribute can be adjusted.

acter:

The following criteria have to be met in order for the player to be able to interact with a char-

* The player has to be close enough to the character. The minimum distance required between
the player and the character before interaction can happen is adjusted by editing the mini-
mumDistance int variable. The default is set to 1, which is one meter. The distance can be
changed via Unity Editor. The distance between the Player game object and the object that
the script is applied to (in this case, an non-playable character) is calculated and stored to

distance variable of float type.

* The character actually has to be set as interactable. This can be done by changing the in-
teractable bool variable to true by either the Inspector window in Unity Editor or by script

function Enablelnteraction.

* The E button on the keyboard has to be pressed once close enough to the character.

Once all the criteria are met, the Player game object is deactivated and the Character Conversation
Camera game object is activated. The interactable characters have their own Cameras which con-
tain multiple Canvases with different text for character speech subtitles and buttons for advancing

19

the conversation. On button clicks a few functions are called, including but not limited to hiding
the current canvas and displaying another canvas (to progress the conversation), play a different
animation for the interactable character, update the notebook once a certain point is reached in a
conversation and set a new objective, as well as disable the interaction and enable the Player object
once the end of the conversation is reached and the final dialogue option is clicked.

The positive of such design is that it is quite simple to control the flow of the game with button
clicks. However, a huge disadvantage is that this makes the game linear. Unfortunately, I was
not able to develop a dynamic conversation system due to lack of experience working with Unity
game engine and developing games in general. While the current implementation works for an
"interactive story" type of game, it is certainly not dynamic enough to give the game replay value.

3.2.4 The "final decision' mechanic

The final part of the main game requires the player to make a decision on which of the in-game
characters is the main culprit of the crime. Of all the six game characters, one can be selected as
the guilty one by pressing a corresponding button. Once a button is pressed, the character will give
an appropriate response to the accusation and the player can proceed with their final decision and
end the game, or go back and select a different character. Depending on the choice of the player,
the game will either be won or lost, as either an innocent or guilty man will be put behind bars.
The final sequence is presented as a game object called EndingSequence, which contains other
game objects such as all six characters, several environment props and cameras for each character.
The game object is activated once the player completes the final conversation and is ready to make
the "final decision". Six buttons are presented for selection of each of the characters as the killer.
For example, clicking the button titled "Blue" will activate BlueAccuseCamera object and play a
different animation for the character. The original idea was to have a dynamic ending with the
guilty character changing with every playthrough, however due to lack of a clear idea how such
system ought to be implemented, the thought was scrapped and instead, every time the player plays
the game, the outcome will always be the same with the same character being the main culprit.
This unfortunately makes the game more linear.

3.3 Game character animations

One of the most important parts of the developed game is game character animations. Over hun-
dred diferent animation clips total are applied to the six in-game characters for diferent in-game
situations. Characters are animated using Unity’s Animator Controllers, which have States with
applied animation clips to them. The Animator Controllers are assigned to character objects via
Unity Editor.

20

= Face Animations An

1dle

Figure 7. A screenshot of one of the Animator Controllers for the character Blue, displaying
Animation States for layers Body Animations and Face Animations.

Eight Animation Controllers were created, seven for the six characters (one for characters Blue,
Red, Yellow, Green, Grey and two for character Suspect), and one for animating the camera in the
Tutorial level. Each Animation Controller has several States that have animation clips assigned
to them. The default State that plays first is the Idle state, which contains either the character’s
face or body animation in idle form, making the character simply stay in place and look around.
Sometimes other States are transitioned into the Idle state. This makes the character, for example,
transition into their idle animation after finishing a sentence. In the case of face animations, there
are three States that are mostly transitioned to from other states, those are called Idle, Calm and
Nervous. The Idle State has an animation of the character simply looking around assigned to it, the
Calm State, once played, has the character, similarly to the Idle State look around a bit or simply
maintain a subtle calm look. The Nervous State is transitioned to mostly from States that play
animation clips of characters telling lies. The Nervous State contains animation clips of character
facial expressions displaying unease, looking around either nervously or suspiciously and generally
being less subtle. The three mentioned states help smoothly transition character face animation,
for example avoiding eye contact after telling a lie, or keeping a straight face after telling the truth.
This helps the player determine whether the character is lying during the conversation or not.

Character Animator Controllers have two layers, Body Animations and Face Animations. The
Body Animations layer contains Animation States for body movements, such as characters either
just standing idly, walking a bit forward or performing other body expressions. The Body Anima-
tions layer is hierarchically higher and has Blending set to Override. The reason for that is because

21

the Body Animations layer’s States have animation clips assigned to them that animate the whole
body of the characters, except for their face. Meanwhile, the Face Animations layer is hierarchi-
cally lower than the Body Animations layer and has its Blending set to Additive. That is because
this layer’s States have animation clips assigned to them that only have facial and head/neck ani-
mations, while the rest of the body is not animated. The Blending for this layer is set to Additive as
opposed to Override because Face Animations layer needs to add information from its animation
clips to the information of Body Animations layer animations, thus animating both the character’s
body and face at the same time. If Override Blending were set to the Face Animations layer, the
information of the Body Animations layer would be ignored and only the character’s face would be
animated, with the rest of the body being stuck in a T-pose, which is the default pose for characters
with no animation.

22

Conclusions and Recommendations

The result of this semester project is a developed short 3D "interactive story" game with realis-
tic character face and body animations applied to in-game characters for enhanced presentation,
immersion and gameplay. However, due to technical difficulties and lack of experience in game
making prior to starting the semester project I was unable to complete my vision for the game, thus
it ended up shorter than I expected, and lacking in content as well as being linear. While research
on both the Unity game engine and the possibilities of motion capture was done throughout the
duration of the development of the semester project, sadly it did not help fully realise a perhaps a
bit too ambitious idea for a beginner in game development. Furthermore, focus on quality of the
presentation resulted in less quantity of the game content. The project could further be improved
by introducing more dynamic game mechanics, such as different game endings and more unique
in-game character conversations, providing the developed game higher replay value and enjoyment
to the player. Nevertheless, it is my conclusion that it is indeed possible to develop a computer
game using an entry-level motion capture system for body and face animations without need for
a large studio or high-end equipment, given that one has more time and experience working with
Unity game engine and development of computer games in particular. I discovered that it is not
particularly difficult to import motion capture animation into the Unity game engine and apply it to
game characters, however the whole process may take a long time, at least that was the case on my
end. Nonetheless it is not a perfect solution, sometimes resulting in mediocre quality animation.
Should a game be developed using a similar setup to the one used for the semester project, my
recommendation would be to use a dual depth sensor solution for body motion capture. Two depth
sensors are more likely to yield better results, as working with one Kinect controller limited the
potential of high quality motion capture body animation.

23

References

[1]

(2]

[6]

[7]

Christina Gough. Number of games released on steam 2018. https://www.statista.com/
statistics/552623/number-games-released-steam/, 2019.

Linus Hakansson and Filip Larsson. Developing a workflow for cross-platform 3d apps using
game engines. 2013.

Viktor Mattsson and Timmy Martensson. Viability of using markerless motion capture: In the
creation of animations for computer games, 2014.

Paula Pszczota and Radostaw Bednarski. Creating character animation with optical motion
capture system. Computer Game Innovations, pages 204-218, 2016.

M Rahul. Review on motion capture technology. Global Journal of Computer Science and
Technology, 2018.

Unity Technologies. Animation controllers. https://docs.unity3d.com/2018.4/Documentation/
Manual/AnimatorControllers.html, 2020.

Unity Technologies. Unity user manual (2018.4). https://docs.unity3d.com/2018.4/
Documentation/Manual/index.html, 2020.

24

https://www.statista.com/statistics/552623/number-games-released-steam/
https://www.statista.com/statistics/552623/number-games-released-steam/
https://docs.unity3d.com/2018.4/Documentation/Manual/AnimatorControllers.html
https://docs.unity3d.com/2018.4/Documentation/Manual/AnimatorControllers.html
https://docs.unity3d.com/2018.4/Documentation/Manual/index.html
https://docs.unity3d.com/2018.4/Documentation/Manual/index.html

	Abstract
	Santrauka
	Introduction
	Analysis of similar games
	Introduction to the analysis of similar games
	Team Bondi and Rockstar Games "L.A. Noire"
	Frogwares "Sherlock Holmes: Crimes & Punishments"
	N-Fusion Interactive "Deus Ex: The Fall"

	Conclusion of the analysis of similar games

	Analysis of the theoretical part of the semester project
	Development of animation for Unity game engine
	Unity Animation System (Mecanim)
	Accepted animation formats and compression
	Combining face and body animations
	Advantages and limitations of markerless motion capture

	System requirements
	UML Use Cases diagram
	UML State diagram

	Analysis of the developed game
	Analysis of the used hardware and software
	Unity game engine
	Hardware: Microsoft Kinect
	Microsoft Visual Studio 2019
	iPi Mocap Studio and iPi Recorder
	Faceshift

	Game mechanics
	First person mode
	The notebook
	Interacting with game characters
	The "final decision" mechanic

	Game character animations

	Conclusions and Recommendations
	References

